Sciencing_Icons_Science SCIENCE
Sciencing_icons_biology biology, sciencing_icons_cells cells, sciencing_icons_molecular molecular, sciencing_icons_microorganisms microorganisms, sciencing_icons_genetics genetics, sciencing_icons_human body human body, sciencing_icons_ecology ecology, sciencing_icons_chemistry chemistry, sciencing_icons_atomic & molecular structure atomic & molecular structure, sciencing_icons_bonds bonds, sciencing_icons_reactions reactions, sciencing_icons_stoichiometry stoichiometry, sciencing_icons_solutions solutions, sciencing_icons_acids & bases acids & bases, sciencing_icons_thermodynamics thermodynamics, sciencing_icons_organic chemistry organic chemistry, sciencing_icons_physics physics, sciencing_icons_fundamentals-physics fundamentals, sciencing_icons_electronics electronics, sciencing_icons_waves waves, sciencing_icons_energy energy, sciencing_icons_fluid fluid, sciencing_icons_astronomy astronomy, sciencing_icons_geology geology, sciencing_icons_fundamentals-geology fundamentals, sciencing_icons_minerals & rocks minerals & rocks, sciencing_icons_earth scructure earth structure, sciencing_icons_fossils fossils, sciencing_icons_natural disasters natural disasters, sciencing_icons_nature nature, sciencing_icons_ecosystems ecosystems, sciencing_icons_environment environment, sciencing_icons_insects insects, sciencing_icons_plants & mushrooms plants & mushrooms, sciencing_icons_animals animals, sciencing_icons_math math, sciencing_icons_arithmetic arithmetic, sciencing_icons_addition & subtraction addition & subtraction, sciencing_icons_multiplication & division multiplication & division, sciencing_icons_decimals decimals, sciencing_icons_fractions fractions, sciencing_icons_conversions conversions, sciencing_icons_algebra algebra, sciencing_icons_working with units working with units, sciencing_icons_equations & expressions equations & expressions, sciencing_icons_ratios & proportions ratios & proportions, sciencing_icons_inequalities inequalities, sciencing_icons_exponents & logarithms exponents & logarithms, sciencing_icons_factorization factorization, sciencing_icons_functions functions, sciencing_icons_linear equations linear equations, sciencing_icons_graphs graphs, sciencing_icons_quadratics quadratics, sciencing_icons_polynomials polynomials, sciencing_icons_geometry geometry, sciencing_icons_fundamentals-geometry fundamentals, sciencing_icons_cartesian cartesian, sciencing_icons_circles circles, sciencing_icons_solids solids, sciencing_icons_trigonometry trigonometry, sciencing_icons_probability-statistics probability & statistics, sciencing_icons_mean-median-mode mean/median/mode, sciencing_icons_independent-dependent variables independent/dependent variables, sciencing_icons_deviation deviation, sciencing_icons_correlation correlation, sciencing_icons_sampling sampling, sciencing_icons_distributions distributions, sciencing_icons_probability probability, sciencing_icons_calculus calculus, sciencing_icons_differentiation-integration differentiation/integration, sciencing_icons_application application, sciencing_icons_projects projects, sciencing_icons_news news.
- Share Tweet Email Print
- Home ⋅
- Science Fair Project Ideas for Kids, Middle & High School Students ⋅
- Probability & Statistics
Distinguishing Between Descriptive & Causal Studies
Internal & External Control in Experiments
Descriptive and causal studies answer fundamentally different kinds of questions. Descriptive studies are designed primarily to describe what is going on or what exists. Causal studies, which are also known as “experimental studies,” are designed to determine whether one or more variables causes or affects the value of other variables.
Directionality of Hypothesis
A causal study’s hypothesis is directional -- it does not simply claim that two or more variables are related, but predicts that one variable or set of variables, called “independent variables,” will affect another variable or set of variables, known as “dependent variables,” in a certain way. An example of a directional hypothesis would be, “I predict that increased levels of exercise will lead to weight loss.” A non-directional hypothesis, which would be suitable for a descriptive study, would simply predict that there exists some relationship between the variables “amount of exercise” and “weight loss.”
Variable Manipulation and Controls
In a causal study, researchers manipulate the set of independent variables to determine their effect, if any, on dependent variables. Researchers in causal studies also typically make use of a “control” -- a case in which the independent variables have not been manipulated, to allow researchers to compare the effects of manipulating the independent variables to the effects of leaving them the same. A descriptive study does not typically involve variable manipulation or a control.
Data Collection Methods: Descriptive Studies
Descriptive studies make use of two primary sorts of data collection: cross-sectional studies and longitudinal studies. The cross-sectional study attempts to give a snapshot of data at a certain moment in time -- variables in a cross-sectional study are measured only once. The longitudinal study, on the other hand, involves a fixed, relatively stable sample measured repeatedly over time. In both cases, methods used might include mail, online or in-person surveys or interviews.
Data Collection Methods: Causal Studies
Case studies likewise make use of two primary sorts of data collection: laboratory experiments and field experiments. Laboratory experiments are conducted in artificial environments which allow researchers to carefully control exactly which variables are manipulated while keeping other factors constant. Field experiments are conducted “in the field,” in a natural or realistic environment. Field experiments allow researchers to test how their hypotheses apply to the “real world.” However, it is often impossible for researchers to control for all possible variables in field experiments, making it harder for researchers to say with confidence exactly what produced a given effect.
Related Articles
How to determine the sample size in a quantitative..., research methods in science, difference between proposition & hypothesis, steps & procedures for conducting scientific research, what are parametric and nonparametric tests, advantages and disadvantages of quadrat use, how to write a hypothesis for correlation, five characteristics of the scientific method, definitions of control, constant, independent and dependent..., what is the difference between a control & a controlled..., the effects of a small sample size limitation, similarities of univariate & multivariate statistical..., how to use the pearson correlation coefficient, what are the 8 steps in scientific research, differences between conceptual independent variables..., how to calculate significance, how to determine sample size.
- Monroe College: Exploratory, Descriptive, and Causal Research Designs
About the Author
Based in Chicago, Adam Jefferys has been writing since 2007. He teaches college writing and literature, and has tutored students in ESL. He holds a Masters of Fine Arts in creative writing, and is currently completing a PhD in English Studies.
IMAGES
VIDEO
COMMENTS
One of the key differences between these three designs is their research approach. Causal research has a highly structured and rigid research design and is generally conducted in the …
An exploratory research method uses case studies, surveys, qualitative analyses, and information from other studies. A descriptive research approach entails using information from other studies, analyses, panels, and …
Causal-comparative research focuses on determining causal relationships between variables by comparing groups that differ in one key variable. Descriptive research aims to provide a …
Quantitative research designs can be divided into two main categories: Correlational and descriptive designs are used to investigate characteristics, averages, …
Research design types are crucial for effective marketing studies. Exploratory, descriptive, and causal designs each serve unique purposes, from gaining insights to …
There is a critical distinction between question type and study design . Descriptive questions can be answered with cross-sectional or longitudinal designs, but predictive and …