Science and the scientific method: Definitions and examples
Here's a look at the foundation of doing science — the scientific method.
The scientific method
Hypothesis, theory and law, a brief history of science, additional resources, bibliography.
Science is a systematic and logical approach to discovering how things in the universe work. It is also the body of knowledge accumulated through the discoveries about all the things in the universe.
The word "science" is derived from the Latin word "scientia," which means knowledge based on demonstrable and reproducible data, according to the Merriam-Webster dictionary . True to this definition, science aims for measurable results through testing and analysis, a process known as the scientific method. Science is based on fact, not opinion or preferences. The process of science is designed to challenge ideas through research. One important aspect of the scientific process is that it focuses only on the natural world, according to the University of California, Berkeley . Anything that is considered supernatural, or beyond physical reality, does not fit into the definition of science.
When conducting research, scientists use the scientific method to collect measurable, empirical evidence in an experiment related to a hypothesis (often in the form of an if/then statement) that is designed to support or contradict a scientific theory .
"As a field biologist, my favorite part of the scientific method is being in the field collecting the data," Jaime Tanner, a professor of biology at Marlboro College, told Live Science. "But what really makes that fun is knowing that you are trying to answer an interesting question. So the first step in identifying questions and generating possible answers (hypotheses) is also very important and is a creative process. Then once you collect the data you analyze it to see if your hypothesis is supported or not."
The steps of the scientific method go something like this, according to Highline College :
- Make an observation or observations.
- Form a hypothesis — a tentative description of what's been observed, and make predictions based on that hypothesis.
- Test the hypothesis and predictions in an experiment that can be reproduced.
- Analyze the data and draw conclusions; accept or reject the hypothesis or modify the hypothesis if necessary.
- Reproduce the experiment until there are no discrepancies between observations and theory. "Replication of methods and results is my favorite step in the scientific method," Moshe Pritsker, a former post-doctoral researcher at Harvard Medical School and CEO of JoVE, told Live Science. "The reproducibility of published experiments is the foundation of science. No reproducibility — no science."
Some key underpinnings to the scientific method:
- The hypothesis must be testable and falsifiable, according to North Carolina State University . Falsifiable means that there must be a possible negative answer to the hypothesis.
- Research must involve deductive reasoning and inductive reasoning . Deductive reasoning is the process of using true premises to reach a logical true conclusion while inductive reasoning uses observations to infer an explanation for those observations.
- An experiment should include a dependent variable (which does not change) and an independent variable (which does change), according to the University of California, Santa Barbara .
- An experiment should include an experimental group and a control group. The control group is what the experimental group is compared against, according to Britannica .
The process of generating and testing a hypothesis forms the backbone of the scientific method. When an idea has been confirmed over many experiments, it can be called a scientific theory. While a theory provides an explanation for a phenomenon, a scientific law provides a description of a phenomenon, according to The University of Waikato . One example would be the law of conservation of energy, which is the first law of thermodynamics that says that energy can neither be created nor destroyed.
A law describes an observed phenomenon, but it doesn't explain why the phenomenon exists or what causes it. "In science, laws are a starting place," said Peter Coppinger, an associate professor of biology and biomedical engineering at the Rose-Hulman Institute of Technology. "From there, scientists can then ask the questions, 'Why and how?'"
Laws are generally considered to be without exception, though some laws have been modified over time after further testing found discrepancies. For instance, Newton's laws of motion describe everything we've observed in the macroscopic world, but they break down at the subatomic level.
This does not mean theories are not meaningful. For a hypothesis to become a theory, scientists must conduct rigorous testing, typically across multiple disciplines by separate groups of scientists. Saying something is "just a theory" confuses the scientific definition of "theory" with the layperson's definition. To most people a theory is a hunch. In science, a theory is the framework for observations and facts, Tanner told Live Science.
The earliest evidence of science can be found as far back as records exist. Early tablets contain numerals and information about the solar system , which were derived by using careful observation, prediction and testing of those predictions. Science became decidedly more "scientific" over time, however.
1200s: Robert Grosseteste developed the framework for the proper methods of modern scientific experimentation, according to the Stanford Encyclopedia of Philosophy. His works included the principle that an inquiry must be based on measurable evidence that is confirmed through testing.
1400s: Leonardo da Vinci began his notebooks in pursuit of evidence that the human body is microcosmic. The artist, scientist and mathematician also gathered information about optics and hydrodynamics.
1500s: Nicolaus Copernicus advanced the understanding of the solar system with his discovery of heliocentrism. This is a model in which Earth and the other planets revolve around the sun, which is the center of the solar system.
1600s: Johannes Kepler built upon those observations with his laws of planetary motion. Galileo Galilei improved on a new invention, the telescope, and used it to study the sun and planets. The 1600s also saw advancements in the study of physics as Isaac Newton developed his laws of motion.
1700s: Benjamin Franklin discovered that lightning is electrical. He also contributed to the study of oceanography and meteorology. The understanding of chemistry also evolved during this century as Antoine Lavoisier, dubbed the father of modern chemistry , developed the law of conservation of mass.
1800s: Milestones included Alessandro Volta's discoveries regarding electrochemical series, which led to the invention of the battery. John Dalton also introduced atomic theory, which stated that all matter is composed of atoms that combine to form molecules. The basis of modern study of genetics advanced as Gregor Mendel unveiled his laws of inheritance. Later in the century, Wilhelm Conrad Röntgen discovered X-rays , while George Ohm's law provided the basis for understanding how to harness electrical charges.
1900s: The discoveries of Albert Einstein , who is best known for his theory of relativity, dominated the beginning of the 20th century. Einstein's theory of relativity is actually two separate theories. His special theory of relativity, which he outlined in a 1905 paper, " The Electrodynamics of Moving Bodies ," concluded that time must change according to the speed of a moving object relative to the frame of reference of an observer. His second theory of general relativity, which he published as " The Foundation of the General Theory of Relativity ," advanced the idea that matter causes space to curve.
In 1952, Jonas Salk developed the polio vaccine , which reduced the incidence of polio in the United States by nearly 90%, according to Britannica . The following year, James D. Watson and Francis Crick discovered the structure of DNA , which is a double helix formed by base pairs attached to a sugar-phosphate backbone, according to the National Human Genome Research Institute .
2000s: The 21st century saw the first draft of the human genome completed, leading to a greater understanding of DNA. This advanced the study of genetics, its role in human biology and its use as a predictor of diseases and other disorders, according to the National Human Genome Research Institute .
- This video from City University of New York delves into the basics of what defines science.
- Learn about what makes science science in this book excerpt from Washington State University .
- This resource from the University of Michigan — Flint explains how to design your own scientific study.
Merriam-Webster Dictionary, Scientia. 2022. https://www.merriam-webster.com/dictionary/scientia
University of California, Berkeley, "Understanding Science: An Overview." 2022. https://undsci.berkeley.edu/article/0_0_0/intro_01
Highline College, "Scientific method." July 12, 2015. https://people.highline.edu/iglozman/classes/astronotes/scimeth.htm
North Carolina State University, "Science Scripts." https://projects.ncsu.edu/project/bio183de/Black/science/science_scripts.html
University of California, Santa Barbara. "What is an Independent variable?" October 31,2017. http://scienceline.ucsb.edu/getkey.php?key=6045
Encyclopedia Britannica, "Control group." May 14, 2020. https://www.britannica.com/science/control-group
The University of Waikato, "Scientific Hypothesis, Theories and Laws." https://sci.waikato.ac.nz/evolution/Theories.shtml
Stanford Encyclopedia of Philosophy, Robert Grosseteste. May 3, 2019. https://plato.stanford.edu/entries/grosseteste/
Encyclopedia Britannica, "Jonas Salk." October 21, 2021. https://www.britannica.com/ biography /Jonas-Salk
National Human Genome Research Institute, "Phosphate Backbone." https://www.genome.gov/genetics-glossary/Phosphate-Backbone
National Human Genome Research Institute, "What is the Human Genome Project?" https://www.genome.gov/human-genome-project/What
Live Science contributor Ashley Hamer updated this article on Jan. 16, 2022.
Sign up for the Live Science daily newsletter now
Get the world’s most fascinating discoveries delivered straight to your inbox.
Evolution quiz: Can you naturally select the correct answers?
Microplastics may be entering the clouds and affecting the weather, scientists say
Space Force's mysterious X-37B begins 'aerobraking' to lower orbit. Here's how it works.
Most Popular
- 2 Do ostriches really bury their heads in the sand?
- 3 How did the Concorde fly so fast?
- 4 Forgetting may provide a surprising evolutionary benefit, experts say
- 5 Evolution quiz: Can you naturally select the correct answers?
- Science, Tech, Math ›
- Chemistry ›
What Is an Experiment? Definition and Design
The Basics of an Experiment
- Chemical Laws
- Periodic Table
- Projects & Experiments
- Scientific Method
- Biochemistry
- Physical Chemistry
- Medical Chemistry
- Chemistry In Everyday Life
- Famous Chemists
- Activities for Kids
- Abbreviations & Acronyms
- Weather & Climate
- Ph.D., Biomedical Sciences, University of Tennessee at Knoxville
- B.A., Physics and Mathematics, Hastings College
Science is concerned with experiments and experimentation, but do you know what exactly an experiment is? Here's a look at what an experiment is... and isn't!
Key Takeaways: Experiments
- An experiment is a procedure designed to test a hypothesis as part of the scientific method.
- The two key variables in any experiment are the independent and dependent variables. The independent variable is controlled or changed to test its effects on the dependent variable.
- Three key types of experiments are controlled experiments, field experiments, and natural experiments.
What Is an Experiment? The Short Answer
In its simplest form, an experiment is simply the test of a hypothesis . A hypothesis, in turn, is a proposed relationship or explanation of phenomena.
Experiment Basics
The experiment is the foundation of the scientific method , which is a systematic means of exploring the world around you. Although some experiments take place in laboratories, you could perform an experiment anywhere, at any time.
Take a look at the steps of the scientific method:
- Make observations.
- Formulate a hypothesis.
- Design and conduct an experiment to test the hypothesis.
- Evaluate the results of the experiment.
- Accept or reject the hypothesis.
- If necessary, make and test a new hypothesis.
Types of Experiments
- Natural Experiments : A natural experiment also is called a quasi-experiment. A natural experiment involves making a prediction or forming a hypothesis and then gathering data by observing a system. The variables are not controlled in a natural experiment.
- Controlled Experiments : Lab experiments are controlled experiments , although you can perform a controlled experiment outside of a lab setting! In a controlled experiment, you compare an experimental group with a control group. Ideally, these two groups are identical except for one variable , the independent variable .
- Field Experiments : A field experiment may be either a natural experiment or a controlled experiment. It takes place in a real-world setting, rather than under lab conditions. For example, an experiment involving an animal in its natural habitat would be a field experiment.
Variables in an Experiment
Simply put, a variable is anything you can change or control in an experiment. Common examples of variables include temperature, duration of the experiment, composition of a material, amount of light, etc. There are three kinds of variables in an experiment: controlled variables, independent variables and dependent variables .
Controlled variables , sometimes called constant variables are variables that are kept constant or unchanging. For example, if you are doing an experiment measuring the fizz released from different types of soda, you might control the size of the container so that all brands of soda would be in 12-oz cans. If you are performing an experiment on the effect of spraying plants with different chemicals, you would try to maintain the same pressure and maybe the same volume when spraying your plants.
The independent variable is the one factor that you are changing. It is one factor because usually in an experiment you try to change one thing at a time. This makes measurements and interpretation of the data much easier. If you are trying to determine whether heating water allows you to dissolve more sugar in the water then your independent variable is the temperature of the water. This is the variable you are purposely controlling.
The dependent variable is the variable you observe, to see whether it is affected by your independent variable. In the example where you are heating water to see if this affects the amount of sugar you can dissolve , the mass or volume of sugar (whichever you choose to measure) would be your dependent variable.
Examples of Things That Are Not Experiments
- Making a model volcano.
- Making a poster.
- Changing a lot of factors at once, so you can't truly test the effect of the dependent variable.
- Trying something, just to see what happens. On the other hand, making observations or trying something, after making a prediction about what you expect will happen, is a type of experiment.
- Bailey, R.A. (2008). Design of Comparative Experiments . Cambridge: Cambridge University Press. ISBN 9780521683579.
- Beveridge, William I. B., The Art of Scientific Investigation . Heinemann, Melbourne, Australia, 1950.
- di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 0-521-29925-X.
- Hinkelmann, Klaus and Kempthorne, Oscar (2008). Design and Analysis of Experiments, Volume I: Introduction to Experimental Design (Second ed.). Wiley. ISBN 978-0-471-72756-9.
- Shadish, William R.; Cook, Thomas D.; Campbell, Donald T. (2002). Experimental and quasi-experimental designs for generalized causal inference (Nachdr. ed.). Boston: Houghton Mifflin. ISBN 0-395-61556-9.
- 10 Things You Need To Know About Chemistry
- Chemistry 101 - Introduction & Index of Topics
- How to Clean Lab Glassware
- How To Design a Science Fair Experiment
- Understanding Experimental Groups
- What Is a Control Group?
- Examples of Independent and Dependent Variables
- How to Write a Lab Report
- The Difference Between Control Group and Experimental Group
- Scientific Method Lesson Plan
- Pre-Lab Prep for Chemistry Lab
- Difference Between Independent and Dependent Variables
- Which Is Faster: Melting Ice in Water or Air?
- What Is the Difference Between Hard and Soft Science?
- 5 Top Reasons Why Students Fail Chemistry
- What Is a Dependent Variable?
- Science Notes Posts
- Contact Science Notes
- Todd Helmenstine Biography
- Anne Helmenstine Biography
- Free Printable Periodic Tables (PDF and PNG)
- Periodic Table Wallpapers
- Interactive Periodic Table
- Periodic Table Posters
- Science Experiments for Kids
- How to Grow Crystals
- Chemistry Projects
- Fire and Flames Projects
- Holiday Science
- Chemistry Problems With Answers
- Physics Problems
- Unit Conversion Example Problems
- Chemistry Worksheets
- Biology Worksheets
- Periodic Table Worksheets
- Physical Science Worksheets
- Science Lab Worksheets
- My Amazon Books
Experiment Definition in Science – What Is a Science Experiment?
In science, an experiment is simply a test of a hypothesis in the scientific method . It is a controlled examination of cause and effect. Here is a look at what a science experiment is (and is not), the key factors in an experiment, examples, and types of experiments.
Experiment Definition in Science
By definition, an experiment is a procedure that tests a hypothesis. A hypothesis, in turn, is a prediction of cause and effect or the predicted outcome of changing one factor of a situation. Both the hypothesis and experiment are components of the scientific method. The steps of the scientific method are:
- Make observations.
- Ask a question or identify a problem.
- State a hypothesis.
- Perform an experiment that tests the hypothesis.
- Based on the results of the experiment, either accept or reject the hypothesis.
- Draw conclusions and report the outcome of the experiment.
Key Parts of an Experiment
The two key parts of an experiment are the independent and dependent variables. The independent variable is the one factor that you control or change in an experiment. The dependent variable is the factor that you measure that responds to the independent variable. An experiment often includes other types of variables , but at its heart, it’s all about the relationship between the independent and dependent variable.
Examples of Experiments
Fertilizer and plant size.
For example, you think a certain fertilizer helps plants grow better. You’ve watched your plants grow and they seem to do better when they have the fertilizer compared to when they don’t. But, observations are only the beginning of science. So, you state a hypothesis: Adding fertilizer increases plant size. Note, you could have stated the hypothesis in different ways. Maybe you think the fertilizer increases plant mass or fruit production, for example. However you state the hypothesis, it includes both the independent and dependent variables. In this case, the independent variable is the presence or absence of fertilizer. The dependent variable is the response to the independent variable, which is the size of the plants.
Now that you have a hypothesis, the next step is designing an experiment that tests it. Experimental design is very important because the way you conduct an experiment influences its outcome. For example, if you use too small of an amount of fertilizer you may see no effect from the treatment. Or, if you dump an entire container of fertilizer on a plant you could kill it! So, recording the steps of the experiment help you judge the outcome of the experiment and aid others who come after you and examine your work. Other factors that might influence your results might include the species of plant and duration of the treatment. Record any conditions that might affect the outcome. Ideally, you want the only difference between your two groups of plants to be whether or not they receive fertilizer. Then, measure the height of the plants and see if there is a difference between the two groups.
Salt and Cookies
You don’t need a lab for an experiment. For example, consider a baking experiment. Let’s say you like the flavor of salt in your cookies, but you’re pretty sure the batch you made using extra salt fell a bit flat. If you double the amount of salt in a recipe, will it affect their size? Here, the independent variable is the amount of salt in the recipe and the dependent variable is cookie size.
Test this hypothesis with an experiment. Bake cookies using the normal recipe (your control group ) and bake some using twice the salt (the experimental group). Make sure it’s the exact same recipe. Bake the cookies at the same temperature and for the same time. Only change the amount of salt in the recipe. Then measure the height or diameter of the cookies and decide whether to accept or reject the hypothesis.
Examples of Things That Are Not Experiments
Based on the examples of experiments, you should see what is not an experiment:
- Making observations does not constitute an experiment. Initial observations often lead to an experiment, but are not a substitute for one.
- Making a model is not an experiment.
- Neither is making a poster.
- Just trying something to see what happens is not an experiment. You need a hypothesis or prediction about the outcome.
- Changing a lot of things at once isn’t an experiment. You only have one independent and one dependent variable. However, in an experiment, you might suspect the independent variable has an effect on a separate. So, you design a new experiment to test this.
Types of Experiments
There are three main types of experiments: controlled experiments, natural experiments, and field experiments,
- Controlled experiment : A controlled experiment compares two groups of samples that differ only in independent variable. For example, a drug trial compares the effect of a group taking a placebo (control group) against those getting the drug (the treatment group). Experiments in a lab or home generally are controlled experiments
- Natural experiment : Another name for a natural experiment is a quasi-experiment. In this type of experiment, the researcher does not directly control the independent variable, plus there may be other variables at play. Here, the goal is establishing a correlation between the independent and dependent variable. For example, in the formation of new elements a scientist hypothesizes that a certain collision between particles creates a new atom. But, other outcomes may be possible. Or, perhaps only decay products are observed that indicate the element, and not the new atom itself. Many fields of science rely on natural experiments, since controlled experiments aren’t always possible.
- Field experiment : While a controlled experiments takes place in a lab or other controlled setting, a field experiment occurs in a natural setting. Some phenomena cannot be readily studied in a lab or else the setting exerts an influence that affects the results. So, a field experiment may have higher validity. However, since the setting is not controlled, it is also subject to external factors and potential contamination. For example, if you study whether a certain plumage color affects bird mate selection, a field experiment in a natural environment eliminates the stressors of an artificial environment. Yet, other factors that could be controlled in a lab may influence results. For example, nutrition and health are controlled in a lab, but not in the field.
- Bailey, R.A. (2008). Design of Comparative Experiments . Cambridge: Cambridge University Press. ISBN 9780521683579.
- di Francia, G. Toraldo (1981). The Investigation of the Physical World . Cambridge University Press. ISBN 0-521-29925-X.
- Hinkelmann, Klaus; Kempthorne, Oscar (2008). Design and Analysis of Experiments. Volume I: Introduction to Experimental Design (2nd ed.). Wiley. ISBN 978-0-471-72756-9.
- Holland, Paul W. (December 1986). “Statistics and Causal Inference”. Journal of the American Statistical Association . 81 (396): 945–960. doi: 10.2307/2289064
- Stohr-Hunt, Patricia (1996). “An Analysis of Frequency of Hands-on Experience and Science Achievement”. Journal of Research in Science Teaching . 33 (1): 101–109. doi: 10.1002/(SICI)1098-2736(199601)33:1<101::AID-TEA6>3.0.CO;2-Z
Related Posts
Experimentation in Scientific Research: Variables and controls in practice
by Anthony Carpi, Ph.D., Anne E. Egger, Ph.D.
Listen to this reading
Did you know that experimental design was developed more than a thousand years ago by a Middle Eastern scientist who studied light? All of us use a form of experimental research in our day to day lives when we try to find the spot with the best cell phone reception, try out new cooking recipes, and more. Scientific experiments are built on similar principles.
Experimentation is a research method in which one or more variables are consciously manipulated and the outcome or effect of that manipulation on other variables is observed.
Experimental designs often make use of controls that provide a measure of variability within a system and a check for sources of error.
Experimental methods are commonly applied to determine causal relationships or to quantify the magnitude of response of a variable.
Anyone who has used a cellular phone knows that certain situations require a bit of research: If you suddenly find yourself in an area with poor phone reception, you might move a bit to the left or right, walk a few steps forward or back, or even hold the phone over your head to get a better signal. While the actions of a cell phone user might seem obvious, the person seeking cell phone reception is actually performing a scientific experiment: consciously manipulating one component (the location of the cell phone) and observing the effect of that action on another component (the phone's reception). Scientific experiments are obviously a bit more complicated, and generally involve more rigorous use of controls , but they draw on the same type of reasoning that we use in many everyday situations. In fact, the earliest documented scientific experiments were devised to answer a very common everyday question: how vision works.
- A brief history of experimental methods
Figure 1: Alhazen (965-ca.1039) as pictured on an Iraqi 10,000-dinar note
One of the first ideas regarding how human vision works came from the Greek philosopher Empedocles around 450 BCE . Empedocles reasoned that the Greek goddess Aphrodite had lit a fire in the human eye, and vision was possible because light rays from this fire emanated from the eye, illuminating objects around us. While a number of people challenged this proposal, the idea that light radiated from the human eye proved surprisingly persistent until around 1,000 CE , when a Middle Eastern scientist advanced our knowledge of the nature of light and, in so doing, developed a new and more rigorous approach to scientific research . Abū 'Alī al-Hasan ibn al-Hasan ibn al-Haytham, also known as Alhazen , was born in 965 CE in the Arabian city of Basra in what is present-day Iraq. He began his scientific studies in physics, mathematics, and other sciences after reading the works of several Greek philosophers. One of Alhazen's most significant contributions was a seven-volume work on optics titled Kitab al-Manazir (later translated to Latin as Opticae Thesaurus Alhazeni – Alhazen's Book of Optics ). Beyond the contributions this book made to the field of optics, it was a remarkable work in that it based conclusions on experimental evidence rather than abstract reasoning – the first major publication to do so. Alhazen's contributions have proved so significant that his likeness was immortalized on the 2003 10,000-dinar note issued by Iraq (Figure 1).
Alhazen invested significant time studying light , color, shadows, rainbows, and other optical phenomena. Among this work was a study in which he stood in a darkened room with a small hole in one wall. Outside of the room, he hung two lanterns at different heights. Alhazen observed that the light from each lantern illuminated a different spot in the room, and each lighted spot formed a direct line with the hole and one of the lanterns outside the room. He also found that covering a lantern caused the spot it illuminated to darken, and exposing the lantern caused the spot to reappear. Thus, Alhazen provided some of the first experimental evidence that light does not emanate from the human eye but rather is emitted by certain objects (like lanterns) and travels from these objects in straight lines. Alhazen's experiment may seem simplistic today, but his methodology was groundbreaking: He developed a hypothesis based on observations of physical relationships (that light comes from objects), and then designed an experiment to test that hypothesis. Despite the simplicity of the method , Alhazen's experiment was a critical step in refuting the long-standing theory that light emanated from the human eye, and it was a major event in the development of modern scientific research methodology.
Comprehension Checkpoint
- Experimentation as a scientific research method
Experimentation is one scientific research method , perhaps the most recognizable, in a spectrum of methods that also includes description, comparison, and modeling (see our Description , Comparison , and Modeling modules). While all of these methods share in common a scientific approach, experimentation is unique in that it involves the conscious manipulation of certain aspects of a real system and the observation of the effects of that manipulation. You could solve a cell phone reception problem by walking around a neighborhood until you see a cell phone tower, observing other cell phone users to see where those people who get the best reception are standing, or looking on the web for a map of cell phone signal coverage. All of these methods could also provide answers, but by moving around and testing reception yourself, you are experimenting.
- Variables: Independent and dependent
In the experimental method , a condition or a parameter , generally referred to as a variable , is consciously manipulated (often referred to as a treatment) and the outcome or effect of that manipulation is observed on other variables. Variables are given different names depending on whether they are the ones manipulated or the ones observed:
- Independent variable refers to a condition within an experiment that is manipulated by the scientist.
- Dependent variable refers to an event or outcome of an experiment that might be affected by the manipulation of the independent variable .
Scientific experimentation helps to determine the nature of the relationship between independent and dependent variables . While it is often difficult, or sometimes impossible, to manipulate a single variable in an experiment , scientists often work to minimize the number of variables being manipulated. For example, as we move from one location to another to get better cell reception, we likely change the orientation of our body, perhaps from south-facing to east-facing, or we hold the cell phone at a different angle. Which variable affected reception: location, orientation, or angle of the phone? It is critical that scientists understand which aspects of their experiment they are manipulating so that they can accurately determine the impacts of that manipulation . In order to constrain the possible outcomes of an experimental procedure, most scientific experiments use a system of controls .
- Controls: Negative, positive, and placebos
In a controlled study, a scientist essentially runs two (or more) parallel and simultaneous experiments: a treatment group, in which the effect of an experimental manipulation is observed on a dependent variable , and a control group, which uses all of the same conditions as the first with the exception of the actual treatment. Controls can fall into one of two groups: negative controls and positive controls .
In a negative control , the control group is exposed to all of the experimental conditions except for the actual treatment . The need to match all experimental conditions exactly is so great that, for example, in a trial for a new drug, the negative control group will be given a pill or liquid that looks exactly like the drug, except that it will not contain the drug itself, a control often referred to as a placebo . Negative controls allow scientists to measure the natural variability of the dependent variable(s), provide a means of measuring error in the experiment , and also provide a baseline to measure against the experimental treatment.
Some experimental designs also make use of positive controls . A positive control is run as a parallel experiment and generally involves the use of an alternative treatment that the researcher knows will have an effect on the dependent variable . For example, when testing the effectiveness of a new drug for pain relief, a scientist might administer treatment placebo to one group of patients as a negative control , and a known treatment like aspirin to a separate group of individuals as a positive control since the pain-relieving aspects of aspirin are well documented. In both cases, the controls allow scientists to quantify background variability and reject alternative hypotheses that might otherwise explain the effect of the treatment on the dependent variable .
- Experimentation in practice: The case of Louis Pasteur
Well-controlled experiments generally provide strong evidence of causality, demonstrating whether the manipulation of one variable causes a response in another variable. For example, as early as the 6th century BCE , Anaximander , a Greek philosopher, speculated that life could be formed from a mixture of sea water, mud, and sunlight. The idea probably stemmed from the observation of worms, mosquitoes, and other insects "magically" appearing in mudflats and other shallow areas. While the suggestion was challenged on a number of occasions, the idea that living microorganisms could be spontaneously generated from air persisted until the middle of the 18 th century.
In the 1750s, John Needham, a Scottish clergyman and naturalist, claimed to have proved that spontaneous generation does occur when he showed that microorganisms flourished in certain foods such as soup broth, even after they had been briefly boiled and covered. Several years later, the Italian abbot and biologist Lazzaro Spallanzani , boiled soup broth for over an hour and then placed bowls of this soup in different conditions, sealing some and leaving others exposed to air. Spallanzani found that microorganisms grew in the soup exposed to air but were absent from the sealed soup. He therefore challenged Needham's conclusions and hypothesized that microorganisms suspended in air settled onto the exposed soup but not the sealed soup, and rejected the idea of spontaneous generation .
Needham countered, arguing that the growth of bacteria in the soup was not due to microbes settling onto the soup from the air, but rather because spontaneous generation required contact with an intangible "life force" in the air itself. He proposed that Spallanzani's extensive boiling destroyed the "life force" present in the soup, preventing spontaneous generation in the sealed bowls but allowing air to replenish the life force in the open bowls. For several decades, scientists continued to debate the spontaneous generation theory of life, with support for the theory coming from several notable scientists including Félix Pouchet and Henry Bastion. Pouchet, Director of the Rouen Museum of Natural History in France, and Bastion, a well-known British bacteriologist, argued that living organisms could spontaneously arise from chemical processes such as fermentation and putrefaction. The debate became so heated that in 1860, the French Academy of Sciences established the Alhumbert prize of 2,500 francs to the first person who could conclusively resolve the conflict. In 1864, Louis Pasteur achieved that result with a series of well-controlled experiments and in doing so claimed the Alhumbert prize.
Pasteur prepared for his experiments by studying the work of others that came before him. In fact, in April 1861 Pasteur wrote to Pouchet to obtain a research description that Pouchet had published. In this letter, Pasteur writes:
Paris, April 3, 1861 Dear Colleague, The difference of our opinions on the famous question of spontaneous generation does not prevent me from esteeming highly your labor and praiseworthy efforts... The sincerity of these sentiments...permits me to have recourse to your obligingness in full confidence. I read with great care everything that you write on the subject that occupies both of us. Now, I cannot obtain a brochure that I understand you have just published.... I would be happy to have a copy of it because I am at present editing the totality of my observations, where naturally I criticize your assertions. L. Pasteur (Porter, 1961)
Pasteur received the brochure from Pouchet several days later and went on to conduct his own experiments . In these, he repeated Spallanzani's method of boiling soup broth, but he divided the broth into portions and exposed these portions to different controlled conditions. Some broth was placed in flasks that had straight necks that were open to the air, some broth was placed in sealed flasks that were not open to the air, and some broth was placed into a specially designed set of swan-necked flasks, in which the broth would be open to the air but the air would have to travel a curved path before reaching the broth, thus preventing anything that might be present in the air from simply settling onto the soup (Figure 2). Pasteur then observed the response of the dependent variable (the growth of microorganisms) in response to the independent variable (the design of the flask). Pasteur's experiments contained both positive controls (samples in the straight-necked flasks that he knew would become contaminated with microorganisms) and negative controls (samples in the sealed flasks that he knew would remain sterile). If spontaneous generation did indeed occur upon exposure to air, Pasteur hypothesized, microorganisms would be found in both the swan-neck flasks and the straight-necked flasks, but not in the sealed flasks. Instead, Pasteur found that microorganisms appeared in the straight-necked flasks, but not in the sealed flasks or the swan-necked flasks.
Figure 2: Pasteur's drawings of the flasks he used (Pasteur, 1861). Fig. 25 D, C, and B (top) show various sealed flasks (negative controls); Fig. 26 (bottom right) illustrates a straight-necked flask directly open to the atmosphere (positive control); and Fig. 25 A (bottom left) illustrates the specially designed swan-necked flask (treatment group).
By using controls and replicating his experiment (he used more than one of each type of flask), Pasteur was able to answer many of the questions that still surrounded the issue of spontaneous generation. Pasteur said of his experimental design, "I affirm with the most perfect sincerity that I have never had a single experiment, arranged as I have just explained, which gave me a doubtful result" (Porter, 1961). Pasteur's work helped refute the theory of spontaneous generation – his experiments showed that air alone was not the cause of bacterial growth in the flask, and his research supported the hypothesis that live microorganisms suspended in air could settle onto the broth in open-necked flasks via gravity .
- Experimentation across disciplines
Experiments are used across all scientific disciplines to investigate a multitude of questions. In some cases, scientific experiments are used for exploratory purposes in which the scientist does not know what the dependent variable is. In this type of experiment, the scientist will manipulate an independent variable and observe what the effect of the manipulation is in order to identify a dependent variable (or variables). Exploratory experiments are sometimes used in nutritional biology when scientists probe the function and purpose of dietary nutrients . In one approach, a scientist will expose one group of animals to a normal diet, and a second group to a similar diet except that it is lacking a specific vitamin or nutrient. The researcher will then observe the two groups to see what specific physiological changes or medical problems arise in the group lacking the nutrient being studied.
Scientific experiments are also commonly used to quantify the magnitude of a relationship between two or more variables . For example, in the fields of pharmacology and toxicology, scientific experiments are used to determine the dose-response relationship of a new drug or chemical. In these approaches, researchers perform a series of experiments in which a population of organisms , such as laboratory mice, is separated into groups and each group is exposed to a different amount of the drug or chemical of interest. The analysis of the data that result from these experiments (see our Data Analysis and Interpretation module) involves comparing the degree of the organism's response to the dose of the substance administered.
In this context, experiments can provide additional evidence to complement other research methods . For example, in the 1950s a great debate ensued over whether or not the chemicals in cigarette smoke cause cancer. Several researchers had conducted comparative studies (see our Comparison in Scientific Research module) that indicated that patients who smoked had a higher probability of developing lung cancer when compared to nonsmokers. Comparative studies differ slightly from experimental methods in that you do not consciously manipulate a variable ; rather you observe differences between two or more groups depending on whether or not they fall into a treatment or control group. Cigarette companies and lobbyists criticized these studies, suggesting that the relationship between smoking and lung cancer was coincidental. Several researchers noted the need for a clear dose-response study; however, the difficulties in getting cigarette smoke into the lungs of laboratory animals prevented this research. In the mid-1950s, Ernest Wynder and colleagues had an ingenious idea: They condensed the chemicals from cigarette smoke into a liquid and applied this in various doses to the skin of groups of mice. The researchers published data from a dose-response experiment of the effect of tobacco smoke condensate on mice (Wynder et al., 1957).
As seen in Figure 3, the researchers found a positive relationship between the amount of condensate applied to the skin of mice and the number of cancers that developed. The graph shows the results of a study in which different groups of mice were exposed to increasing amounts of cigarette tar. The black dots indicate the percentage of each sample group of mice that developed cancer for a given amount cigarette smoke "condensate" applied to their skin. The vertical lines are error bars, showing the amount of uncertainty . The graph shows generally increasing cancer rates with greater exposure. This study was one of the first pieces of experimental evidence in the cigarette smoking debate , and it helped strengthen the case for cigarette smoke as the causative agent in lung cancer in smokers.
Figure 3: Percentage of mice with cancer versus the amount cigarette smoke "condensate" applied to their skin (source: Wynder et al., 1957).
Sometimes experimental approaches and other research methods are not clearly distinct, or scientists may even use multiple research approaches in combination. For example, at 1:52 a.m. EDT on July 4, 2005, scientists with the National Aeronautics and Space Administration (NASA) conducted a study in which a 370 kg spacecraft named Deep Impact was purposely slammed into passing comet Tempel 1. A nearby spacecraft observed the impact and radioed data back to Earth. The research was partially descriptive in that it documented the chemical composition of the comet, but it was also partly experimental in that the effect of slamming the Deep Impact probe into the comet on the volatilization of previously undetected compounds , such as water, was assessed (A'Hearn et al., 2005). It is particularly common that experimentation and description overlap: Another example is Jane Goodall 's research on the behavior of chimpanzees, which can be read in our Description in Scientific Research module.
- Limitations of experimental methods
Figure 4: An image of comet Tempel 1 67 seconds after collision with the Deep Impact impactor. Image credit: NASA/JPL-Caltech/UMD http://deepimpact.umd.edu/gallery/HRI_937_1.html
While scientific experiments provide invaluable data regarding causal relationships, they do have limitations. One criticism of experiments is that they do not necessarily represent real-world situations. In order to clearly identify the relationship between an independent variable and a dependent variable , experiments are designed so that many other contributing variables are fixed or eliminated. For example, in an experiment designed to quantify the effect of vitamin A dose on the metabolism of beta-carotene in humans, Shawna Lemke and colleagues had to precisely control the diet of their human volunteers (Lemke, Dueker et al. 2003). They asked their participants to limit their intake of foods rich in vitamin A and further asked that they maintain a precise log of all foods eaten for 1 week prior to their study. At the time of their study, they controlled their participants' diet by feeding them all the same meals, described in the methods section of their research article in this way:
Meals were controlled for time and content on the dose administration day. Lunch was served at 5.5 h postdosing and consisted of a frozen dinner (Enchiladas, Amy's Kitchen, Petaluma, CA), a blueberry bagel with jelly, 1 apple and 1 banana, and a large chocolate chunk cookie (Pepperidge Farm). Dinner was served 10.5 h post dose and consisted of a frozen dinner (Chinese Stir Fry, Amy's Kitchen) plus the bagel and fruit taken for lunch.
While this is an important aspect of making an experiment manageable and informative, it is often not representative of the real world, in which many variables may change at once, including the foods you eat. Still, experimental research is an excellent way of determining relationships between variables that can be later validated in real world settings through descriptive or comparative studies.
Design is critical to the success or failure of an experiment . Slight variations in the experimental set-up could strongly affect the outcome being measured. For example, during the 1950s, a number of experiments were conducted to evaluate the toxicity in mammals of the metal molybdenum, using rats as experimental subjects . Unexpectedly, these experiments seemed to indicate that the type of cage the rats were housed in affected the toxicity of molybdenum. In response, G. Brinkman and Russell Miller set up an experiment to investigate this observation (Brinkman & Miller, 1961). Brinkman and Miller fed two groups of rats a normal diet that was supplemented with 200 parts per million (ppm) of molybdenum. One group of rats was housed in galvanized steel (steel coated with zinc to reduce corrosion) cages and the second group was housed in stainless steel cages. Rats housed in the galvanized steel cages suffered more from molybdenum toxicity than the other group: They had higher concentrations of molybdenum in their livers and lower blood hemoglobin levels. It was then shown that when the rats chewed on their cages, those housed in the galvanized metal cages absorbed zinc plated onto the metal bars, and zinc is now known to affect the toxicity of molybdenum. In order to control for zinc exposure, then, stainless steel cages needed to be used for all rats.
Scientists also have an obligation to adhere to ethical limits in designing and conducting experiments . During World War II, doctors working in Nazi Germany conducted many heinous experiments using human subjects . Among them was an experiment meant to identify effective treatments for hypothermia in humans, in which concentration camp prisoners were forced to sit in ice water or left naked outdoors in freezing temperatures and then re-warmed by various means. Many of the exposed victims froze to death or suffered permanent injuries. As a result of the Nazi experiments and other unethical research , strict scientific ethical standards have been adopted by the United States and other governments, and by the scientific community at large. Among other things, ethical standards (see our Scientific Ethics module) require that the benefits of research outweigh the risks to human subjects, and those who participate do so voluntarily and only after they have been made fully aware of all the risks posed by the research. These guidelines have far-reaching effects: While the clearest indication of causation in the cigarette smoke and lung cancer debate would have been to design an experiment in which one group of people was asked to take up smoking and another group was asked to refrain from smoking, it would be highly unethical for a scientist to purposefully expose a group of healthy people to a suspected cancer causing agent. As an alternative, comparative studies (see our Comparison in Scientific Research module) were initiated in humans, and experimental studies focused on animal subjects. The combination of these and other studies provided even stronger evidence of the link between smoking and lung cancer than either one method alone would have.
- Experimentation in modern practice
Like all scientific research , the results of experiments are shared with the scientific community, are built upon, and inspire additional experiments and research. For example, once Alhazen established that light given off by objects enters the human eye, the natural question that was asked was "What is the nature of light that enters the human eye?" Two common theories about the nature of light were debated for many years. Sir Isaac Newton was among the principal proponents of a theory suggesting that light was made of small particles . The English naturalist Robert Hooke (who held the interesting title of Curator of Experiments at the Royal Society of London) supported a different theory stating that light was a type of wave, like sound waves . In 1801, Thomas Young conducted a now classic scientific experiment that helped resolve this controversy . Young, like Alhazen, worked in a darkened room and allowed light to enter only through a small hole in a window shade. Young refocused the beam of light with mirrors and split the beam with a paper-thin card. The split light beams were then projected onto a screen, and formed an alternating light and dark banding pattern (Figure 5) – that was a sign that light was indeed a wave (see our Light I: Particle or Wave? module).
Figure 5: Young's depiction of the results of his experiment (Young, 1845). The dark spot represents the card held in front of a window slit, producing two parallel beams of light. The light and dark bands represent the brighter and darker bands he observed.
Approximately 100 years later, in 1905, new experiments led Albert Einstein to conclude that light exhibits properties of both waves and particles . Einstein's dual wave-particle theory is now generally accepted by scientists.
Experiments continue to help refine our understanding of light even today. In addition to his wave-particle theory , Einstein also proposed that the speed of light was unchanging and absolute. Yet in 1998 a group of scientists led by Lene Hau showed that light could be slowed from its normal speed of 3 x 10 8 meters per second to a mere 17 meters per second with a special experimental apparatus (Hau et al., 1999). The series of experiments that began with Alhazen 's work 1000 years ago has led to a progressively deeper understanding of the nature of light. Although the tools with which scientists conduct experiments may have become more complex, the principles behind controlled experiments are remarkably similar to those used by Pasteur and Alhazen hundreds of years ago.
Table of Contents
Activate glossary term highlighting to easily identify key terms within the module. Once highlighted, you can click on these terms to view their definitions.
Activate NGSS annotations to easily identify NGSS standards within the module. Once highlighted, you can click on them to view these standards.
Biomedical Beat Blog – National Institute of General Medical Sciences
Follow the process of discovery
Search this blog
How research works: understanding the process of science.
Have you ever wondered how research works? How scientists make discoveries about our health and the world around us? Whether they’re studying plants, animals, humans, or something else in our world, they follow the scientific method. But this method isn’t always—or even usually—a straight line, and often the answers are unexpected and lead to more questions. Let’s dive in to see how it all works.
The Question Scientists start with a question about something they observe in the world. They develop a hypothesis, which is a testable prediction of what the answer to their question will be. Often their predictions turn out to be correct, but sometimes searching for the answer leads to unexpected outcomes.
The Techniques To test their hypotheses, scientists conduct experiments. They use many different tools and techniques, and sometimes they need to invent a new tool to fully answer their question. They may also work with one or more scientists with different areas of expertise to approach the question from other angles and get a more complete answer to their question.
The Evidence Throughout their experiments, scientists collect and analyze their data. They reach conclusions based on those analyses and determine whether their results match the predictions from their hypothesis. Often these conclusions trigger new questions and new hypotheses to test.
Researchers share their findings with one another by publishing papers in scientific journals and giving presentations at meetings. Data sharing is very important for the scientific field, and although some results may seem insignificant, each finding is often a small piece of a larger puzzle. That small piece may spark a new question and ultimately lead to new findings.
Sometimes research results seem to contradict each other, but this doesn’t necessarily mean that the results are wrong. Instead, it often means that the researchers used different tools, methods, or timeframes to obtain their results. The results of a single study are usually unable to fully explain the complex systems in the world around us. We must consider how results from many research studies fit together. This perspective gives us a more complete picture of what’s really happening.
Even if the scientific process doesn’t answer the original question, the knowledge gained may help provide other answers that lead to new hypotheses and discoveries.
Learn more about the importance of communicating how this process works in the NIH News in Health article, “ Explaining How Research Works .”
This post is a great supplement to Pathways: The Basic Science Careers Issue.
Pathways introduces the important role that scientists play in understanding the world around us, and all scientists use the scientific method as they make discoveries—which is explained in this post.
Learn more in our Educator’s Corner .
2 Replies to “How Research Works: Understanding the Process of Science”
Nice basic explanation. I believe informing the lay public on how science works, how parts of the body interact, etc. is a worthwhile endeavor. You all Rock! Now, we need to spread the word ‼️❗️‼️ Maybe eith a unique app. And one day, with VR and incentives to read & answer a couple questions.
As you know, the importance of an informed population is what will keep democracy alive. Plus it will improve peoples overall wellness & life outcomes.
Thanks for this clear explanation for the person who does not know science. Without getting too technical or advanced, it might be helpful to follow your explanation of replication with a reference to meta-analysis. You might say something as simple as, “Meta-analysis is a method for doing research on all the best research; meta-analytic research confirms the overall trend in results, even when the best studies show different results.”
Comments are closed.
Subscribe to Biomedical Beat
Get our latest blog posts delivered straight to your inbox! Sign Up Here
The Scientific Method by Science Made Simple
Understanding and using the scientific method.
The Scientific Method is a process used to design and perform experiments. It's important to minimize experimental errors and bias, and increase confidence in the accuracy of your results.
In the previous sections, we talked about how to pick a good topic and specific question to investigate. Now we will discuss how to carry out your investigation.
Steps of the Scientific Method
- Observation/Research
- Experimentation
Now that you have settled on the question you want to ask, it's time to use the Scientific Method to design an experiment to answer that question.
If your experiment isn't designed well, you may not get the correct answer. You may not even get any definitive answer at all!
The Scientific Method is a logical and rational order of steps by which scientists come to conclusions about the world around them. The Scientific Method helps to organize thoughts and procedures so that scientists can be confident in the answers they find.
OBSERVATION is first step, so that you know how you want to go about your research.
HYPOTHESIS is the answer you think you'll find.
PREDICTION is your specific belief about the scientific idea: If my hypothesis is true, then I predict we will discover this.
EXPERIMENT is the tool that you invent to answer the question, and
CONCLUSION is the answer that the experiment gives.
Don't worry, it isn't that complicated. Let's take a closer look at each one of these steps. Then you can understand the tools scientists use for their science experiments, and use them for your own.
OBSERVATION
This step could also be called "research." It is the first stage in understanding the problem.
After you decide on topic, and narrow it down to a specific question, you will need to research everything that you can find about it. You can collect information from your own experiences, books, the internet, or even smaller "unofficial" experiments.
Let's continue the example of a science fair idea about tomatoes in the garden. You like to garden, and notice that some tomatoes are bigger than others and wonder why.
Because of this personal experience and an interest in the problem, you decide to learn more about what makes plants grow.
For this stage of the Scientific Method, it's important to use as many sources as you can find. The more information you have on your science fair topic, the better the design of your experiment is going to be, and the better your science fair project is going to be overall.
Also try to get information from your teachers or librarians, or professionals who know something about your science fair project. They can help to guide you to a solid experimental setup.
The next stage of the Scientific Method is known as the "hypothesis." This word basically means "a possible solution to a problem, based on knowledge and research."
The hypothesis is a simple statement that defines what you think the outcome of your experiment will be.
All of the first stage of the Scientific Method -- the observation, or research stage -- is designed to help you express a problem in a single question ("Does the amount of sunlight in a garden affect tomato size?") and propose an answer to the question based on what you know. The experiment that you will design is done to test the hypothesis.
Using the example of the tomato experiment, here is an example of a hypothesis:
TOPIC: "Does the amount of sunlight a tomato plant receives affect the size of the tomatoes?"
HYPOTHESIS: "I believe that the more sunlight a tomato plant receives, the larger the tomatoes will grow.
This hypothesis is based on:
(1) Tomato plants need sunshine to make food through photosynthesis, and logically, more sun means more food, and;
(2) Through informal, exploratory observations of plants in a garden, those with more sunlight appear to grow bigger.
The hypothesis is your general statement of how you think the scientific phenomenon in question works.
Your prediction lets you get specific -- how will you demonstrate that your hypothesis is true? The experiment that you will design is done to test the prediction.
An important thing to remember during this stage of the scientific method is that once you develop a hypothesis and a prediction, you shouldn't change it, even if the results of your experiment show that you were wrong.
An incorrect prediction does NOT mean that you "failed." It just means that the experiment brought some new facts to light that maybe you hadn't thought about before.
Continuing our tomato plant example, a good prediction would be: Increasing the amount of sunlight tomato plants in my experiment receive will cause an increase in their size compared to identical plants that received the same care but less light.
This is the part of the scientific method that tests your hypothesis. An experiment is a tool that you design to find out if your ideas about your topic are right or wrong.
It is absolutely necessary to design a science fair experiment that will accurately test your hypothesis. The experiment is the most important part of the scientific method. It's the logical process that lets scientists learn about the world.
On the next page, we'll discuss the ways that you can go about designing a science fair experiment idea.
The final step in the scientific method is the conclusion. This is a summary of the experiment's results, and how those results match up to your hypothesis.
You have two options for your conclusions: based on your results, either:
(1) YOU CAN REJECT the hypothesis, or
(2) YOU CAN NOT REJECT the hypothesis.
This is an important point!
You can not PROVE the hypothesis with a single experiment, because there is a chance that you made an error somewhere along the way.
What you can say is that your results SUPPORT the original hypothesis.
If your original hypothesis didn't match up with the final results of your experiment, don't change the hypothesis.
Instead, try to explain what might have been wrong with your original hypothesis. What information were you missing when you made your prediction? What are the possible reasons the hypothesis and experimental results didn't match up?
Remember, a science fair experiment isn't a failure simply because does not agree with your hypothesis. No one will take points off if your prediction wasn't accurate. Many important scientific discoveries were made as a result of experiments gone wrong!
A science fair experiment is only a failure if its design is flawed. A flawed experiment is one that (1) doesn't keep its variables under control, and (2) doesn't sufficiently answer the question that you asked of it.
Search This Site:
Science Fairs
- Introduction
- Project Ideas
- Types of Projects
- Pick a Topic
- Scientific Method
- Design Your Experiment
- Present Your Project
- What Judges Want
- Parent Info
Recommended *
- Sample Science Projects - botany, ecology, microbiology, nutrition
* This site contains affiliate links to carefully chosen, high quality products. We may receive a commission for purchases made through these links.
- Terms of Service
Copyright © 2006 - 2023, Science Made Simple, Inc. All Rights Reserved.
The science fair projects & ideas, science articles and all other material on this website are covered by copyright laws and may not be reproduced without permission.
IMAGES
VIDEO
COMMENTS
The scientific method is a process for experimentation that is used to explore observations and answer questions. Do all scientists follow the scientific method exactly? No. Some areas of science can be more easily tested than others.
Scientists use the scientific method to make observations, form hypotheses and gather evidence in an experiment aimed at supporting or contradicting a theory.
An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into cause-and-effect by demonstrating what outcome occurs when a particular factor is manipulated.
An experiment is a procedure designed to test a hypothesis as part of the scientific method. The two key variables in any experiment are the independent and dependent variables. The independent variable is controlled or changed to test its effects on the dependent variable.
The steps of the scientific method are: Make observations. Ask a question or identify a problem. State a hypothesis. Perform an experiment that tests the hypothesis. Based on the results of the experiment, either accept or reject the hypothesis. Draw conclusions and report the outcome of the experiment. Key Parts of an Experiment.
Scientific experimentation helps to determine the nature of the relationship between independent and dependent variables. While it is often difficult, or sometimes impossible, to manipulate a single variable in an experiment, scientists often work to minimize the number of variables being manipulated.
Throughout their experiments, scientists collect and analyze their data. They reach conclusions based on those analyses and determine whether their results match the predictions from their hypothesis.
In a typical application of the scientific method, a researcher develops a hypothesis, tests it through various means, and then modifies the hypothesis on the basis of the outcome of the tests and experiments.
The Scientific Method is a process used to design and perform experiments. It's important to minimize experimental errors and bias, and increase confidence in the accuracy of your results. In the previous sections, we talked about how to pick a good topic and specific question to investigate.
The scientific method is the process of objectively establishing facts through testing and experimentation. The basic process involves making an observation, forming a hypothesis, making a prediction, conducting an experiment and finally analyzing the results. The principals of the scientific method can be applied in many areas, including ...